Commit 5a44b4e3 by Febby Simanjuntak

reset

parents 8642a1ed 2d671302
This diff is collapsed. Click to expand it.
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os,django\n",
"import pandas as pd\n",
"from orm.models import Siswa,Kelas,Karakter\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'Siswa' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-1-eabc7ddc4584>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# Kelas\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0msw\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mSiswa\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobjects\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mall\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mkl\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mKelas\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobjects\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mall\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mListKelas\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msw\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'Siswa' is not defined"
]
}
],
"source": [
"# Kelas\n",
"sw=Siswa.objects.all()\n",
"kl=Kelas.objects.all()\n",
"\n",
"def ListKelas(sw):\n",
" if len(sw)>0:\n",
" cols = ['Nilai']\n",
" \n",
" kel ={\n",
" cols[0] : [int(a.kelass.nilai) for a in sw],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" return dfkel\n",
" else:\n",
" return[]\n",
"\n",
"def Hasil_Kelas():\n",
" kl=ListKelas(sw)\n",
" b = 0\n",
" tampung=[]\n",
" for y in range(len(sw)):\n",
" a=(math.pow(kl.Nilai[y],2))\n",
" b = b+a\n",
" for i in range(len(sw)):\n",
" s = kl.Nilai[i]\n",
" ad=s/(math.sqrt(b))\n",
" tampung.append(ad)\n",
" \n",
" swa={'nama':[a.nama for a in sw]}\n",
" \n",
" if len(sw)>0:\n",
" cols = ['Jenjang']\n",
" \n",
" kel ={\n",
" cols[0] : [str(a.kelass.jenjang) for a in sw],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" \n",
" \n",
" dfswa= pd.DataFrame(data=swa)\n",
" Kelas=pd.DataFrame(data=tampung,columns=['Nilai'])\n",
" new = pd.concat([dfswa,dfkel, Kelas], axis=1)\n",
" return new\n",
"\n",
"\n",
"def HasilKelas_Pembobotan():\n",
" b=Hasil_Kelas()\n",
" lst=list(b)\n",
" y=0\n",
" d=[]\n",
" lst\n",
" \n",
" for i in range(len(b)):\n",
" y =0.3*b.Nilai[i]\n",
" d.append(y)\n",
" pb=pd.DataFrame(d,columns=['Nilai'])\n",
" swa={'nama':[a.nama for a in sw]}\n",
" dfswa= pd.DataFrame(data=swa)\n",
" # Kelas=pd.DataFrame(data=tampung,columns=['Nilai'])\n",
" new = pd.concat([dfswa, pb], axis=1)\n",
" return new"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"HasilKelas_Pembobotan()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Hasil_Kelas()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def ListKelasJn(sw):\n",
" if len(sw)>0:\n",
" cols = ['Jenjang']\n",
" \n",
" kel ={\n",
" cols[0] : [str(a.kelass.jenjang) for a in sw],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" return dfkel\n",
" else:\n",
" return[]\n",
"ListKelasJn(sw)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def Bobot_MTK():\n",
" b=Hasil_Kelas()\n",
" lst=list(b)\n",
" y=0\n",
" d=[]\n",
" lst\n",
" for i in range(len(lst)):\n",
" y =0.3*lst[i]\n",
" d.append(y)\n",
" pb=pd.DataFrame(d,columns=['Nilai'])\n",
" swa={'nama':[a.nama for a in sw]}\n",
" dfswa= pd.DataFrame(data=swa)\n",
" new = pd.concat([dfswa, pb], axis=1)\n",
" return new\n",
"\n",
"Bobot_MTK()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"krt=Karakter.objects.all()\n",
"def ListAkademik(krt):\n",
" if len(krt)>0:\n",
" cols = ['matapelajaran','nilai']\n",
" kel ={\n",
" cols[0] : [str(a.matapelajaran) for a in ak],\n",
" cols[1] : [int(a.nilai) for a in ak],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" return dfkel\n",
" else:\n",
" return[]\n",
"\n",
"ListAkademik(ak)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def ListKecerdasan(krywn):\n",
" if len(krywn)>0:\n",
" target = [4, 3, 4, 5, 3]\n",
" cols = ['sistematika_berfikir', 'konsentrasi', 'logika_praktis','imajinasi_kreatif','antisipasi']\n",
"\n",
" krn = {'nama': [a.nama for a in krywn]}\n",
" dfkrn = pd.DataFrame(data=krn)\n",
"\n",
" kec = {\n",
" cols[0] : [int(a.kecerdasans.sistematika_berfikir) for a in krywn],\n",
" cols[1] : [int(a.kecerdasans.konsentrasi) for a in krywn],\n",
" cols[2] : [int(a.kecerdasans.logika_praktis) for a in krywn],\n",
" cols[3] : [int(a.kecerdasans.imajinasi_kreatif) for a in krywn],\n",
" cols[4] : [int(a.kecerdasans.antisipasi) for a in krywn],\n",
" }\n",
" dfkec = pd.DataFrame(data=kec)\n",
"\n",
" gap = get_gap(dfkec, target)\n",
" pb = pembobotan(gap, cols)\n",
" new = pd.concat([dfkrn, pb], axis=1)\n",
" return new\n",
" else:\n",
" return []"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment