Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
TA13
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
12
Issues
12
List
Board
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Febby B. Simanjuntak
TA13
Commits
3c1534cc
Commit
3c1534cc
authored
Jun 05, 2020
by
Febby Simanjuntak
Browse files
Options
Browse Files
Download
Plain Diff
implemen
parents
b5304274
35d1c832
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
149 additions
and
0 deletions
+149
-0
Evolutionary.ipynb
Evolutionary.ipynb
+149
-0
No files found.
Evolutionary.ipynb
0 → 100644
View file @
3c1534cc
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"EA"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"N_CITIES = 606 \n",
"CROSS_RATE = 0.1\n",
"MUTATE_RATE = 0.02\n",
"POP_SIZE = 500\n",
"N_GENERATIONS = 500"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"class GA(object):\n",
" def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ):\n",
" self.DNA_size = DNA_size\n",
" self.cross_rate = cross_rate\n",
" self.mutate_rate = mutation_rate\n",
" self.pop_size = pop_size\n",
"\n",
" self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)])\n",
"\n",
" def translateDNA(self, DNA, city_position): # get cities' coord in order\n",
" line_x = np.empty_like(DNA, dtype=np.float64)\n",
" line_y = np.empty_like(DNA, dtype=np.float64)\n",
" for i, d in enumerate(DNA):\n",
" city_coord = city_position[d]\n",
" line_x[i, :] = city_coord[:, 0]\n",
" line_y[i, :] = city_coord[:, 1]\n",
" return line_x, line_y\n",
"\n",
" def get_fitness(self, line_x, line_y):\n",
" total_distance = np.empty((line_x.shape[0],), dtype=np.float64)\n",
" for i, (xs, ys) in enumerate(zip(line_x, line_y)):\n",
" total_distance[i] = np.sum(np.sqrt(np.square(np.diff(xs)) + np.square(np.diff(ys))))\n",
" fitness = np.exp(self.DNA_size * 2 / total_distance)\n",
" return fitness, total_distance\n",
"\n",
" def select(self, fitness):\n",
" idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness / fitness.sum())\n",
" return self.pop[idx]\n",
"\n",
" def crossover(self, parent, pop):\n",
" if np.random.rand() < self.cross_rate:\n",
" i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop\n",
" cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points\n",
" keep_city = parent[~cross_points] # find the city number\n",
" swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)]\n",
" parent[:] = np.concatenate((keep_city, swap_city))\n",
" return parent\n",
"\n",
" def mutate(self, child):\n",
" for point in range(self.DNA_size):\n",
" if np.random.rand() < self.mutate_rate:\n",
" swap_point = np.random.randint(0, self.DNA_size)\n",
" swapA, swapB = child[point], child[swap_point]\n",
" child[point], child[swap_point] = swapB, swapA\n",
" return child\n",
"\n",
" def evolve(self, fitness):\n",
" pop = self.select(fitness)\n",
" pop_copy = pop.copy()\n",
" for parent in pop: # for every parent\n",
" child = self.crossover(parent, pop_copy)\n",
" child = self.mutate(child)\n",
" parent[:] = child\n",
" self.pop = pop\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class TravelItinerary(object):\n",
" def __init__(self, n_cities):\n",
" self.city_position = np.random.rand(n_cities, 2)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment