Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
I
IR_Project_inverted_index
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Kel. 2 IR Project
IR_Project_inverted_index
Commits
60619c31
Commit
60619c31
authored
May 29, 2020
by
Ventina
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
5e793744
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
264 additions
and
0 deletions
+264
-0
main2.py
IR Project /apps/inverted/main2.py
+264
-0
No files found.
IR Project /apps/inverted/main2.py
0 → 100644
View file @
60619c31
resource_package
=
__name__
#
import
string
import
re
from
sklearn.feature_extraction.text
import
CountVectorizer
import
string
import
re
from
sklearn.feature_extraction.text
import
CountVectorizer
from
nltk.corpus
import
stopwords
from
nltk.tokenize
import
sent_tokenize
,
word_tokenize
from
Sastrawi.Stemmer.StemmerFactory
import
StemmerFactory
from
itertools
import
count
import
collections
import
math
from
xml.etree.ElementTree
import
ElementTree
##############Remove Punctuation, URL and Tokenize###################
def
remove_punc_tokenize
(
sentence
):
tokens
=
[]
for
punctuation
in
string
.
punctuation
:
sentence
=
sentence
.
replace
(
punctuation
,
" "
)
sentence
=
re
.
sub
(
r'^https?:\/\/.*[\r\n]*'
,
''
,
sentence
,
flags
=
re
.
MULTILINE
)
for
w
in
CountVectorizer
()
.
build_tokenizer
()(
sentence
):
tokens
.
append
(
w
)
return
tokens
##############Case Folding########################
def
to_lower
(
tokens
):
tokens
=
[
x
.
lower
()
for
x
in
tokens
]
return
tokens
def
generate_ngrams
(
data
,
n
):
ngram
=
[]
result
=
[]
#menampilkan hasil n-gram per dokumen
for
i
in
range
(
len
(
data
)):
sequences
=
[
data
[
i
][
j
:]
for
j
in
range
(
n
)]
temp
=
zip
(
*
sequences
)
lst
=
list
(
temp
)
result
.
append
([
" "
.
join
(
lst
)
for
lst
in
lst
])
#menggabungkan n-gram semua dokumen dalam bentuk array
for
i
in
range
(
len
(
result
)):
for
j
in
range
(
len
(
result
[
i
])):
ngram
.
append
(
result
[
i
][
j
])
return
ngram
,
result
def
main
(
query
):
tree
=
ElementTree
()
tree
.
parse
(
"apps/data/netflix_show.xml"
)
all_doc_no
=
[]
all_title
=
[]
all_description
=
[]
all_cast
=
[]
all_year
=
[]
for
node
in
tree
.
iter
(
"show_id"
):
all_doc_no
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"title"
):
all_title
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"description"
):
all_description
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"cast"
):
all_cast
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"release_year"
):
all_year
.
append
(
node
.
text
)
N_DOC
=
len
(
all_description
)
all_sentence_doc
=
[]
for
i
in
range
(
N_DOC
):
all_sentence_doc
.
append
(
all_title
[
i
]
+
all_description
[
i
])
tokens_doc
=
[]
for
i
in
range
(
N_DOC
):
tokens_doc
.
append
(
remove_punc_tokenize
(
all_sentence_doc
[
i
]))
for
i
in
range
(
N_DOC
):
tokens_doc
[
i
]
=
to_lower
(
tokens_doc
[
i
])
stop_words
=
set
(
stopwords
.
words
(
'english'
))
stopping
=
[]
for
i
in
range
(
N_DOC
):
temp
=
[]
for
j
in
tokens_doc
[
i
]:
if
j
not
in
stop_words
:
temp
.
append
(
j
)
stopping
.
append
(
temp
)
for
i
in
range
(
N_DOC
):
tokens_doc
[
i
]
=
([
w
for
w
in
stopping
[
i
]
if
not
any
(
j
.
isdigit
()
for
j
in
w
)])
factory
=
StemmerFactory
()
stemmer
=
factory
.
create_stemmer
()
stemming
=
[]
for
i
in
range
(
N_DOC
):
temp
=
[]
for
j
in
tokens_doc
[
i
]:
# print(j)
temp
.
append
(
stemmer
.
stem
(
j
))
stemming
.
append
(
temp
)
all_tokens
=
[]
for
i
in
range
(
N_DOC
):
for
w
in
stemming
[
i
]:
all_tokens
.
append
(
w
)
new_sentence
=
' '
.
join
([
w
for
w
in
all_tokens
])
for
w
in
CountVectorizer
()
.
build_tokenizer
()(
new_sentence
):
all_tokens
.
append
(
w
)
all_tokens
=
set
(
all_tokens
)
alls
=
[]
for
i
in
all_tokens
:
alls
.
append
(
i
)
queri
=
[]
spl
=
query
.
split
()
for
i
in
range
(
len
(
spl
)):
if
not
spl
[
i
]
.
isdigit
():
queri
.
append
(
spl
[
i
])
punc
=
[]
for
i
in
range
(
len
(
queri
)):
no_punc
=
""
for
j
in
range
(
len
(
queri
[
i
])):
if
queri
[
i
][
j
]
not
in
string
.
punctuation
:
no_punc
=
no_punc
+
queri
[
i
][
j
]
punc
.
append
(
no_punc
)
lower
=
[]
for
i
in
range
(
len
(
punc
)):
lower
.
append
(
punc
[
i
]
.
lower
())
stop
=
[]
for
i
in
range
(
len
(
lower
)):
if
lower
[
i
]
not
in
stop_words
:
stop
.
append
(
lower
[
i
])
stem
=
[]
for
i
in
range
(
len
(
stop
)):
stem
.
append
(
stemmer
.
stem
(
stop
[
i
]))
join_word
=
' '
.
join
([
w
for
w
in
stem
])
ngram
,
ngram_doc
=
generate_ngrams
(
stemming
,
len
(
stem
))
n_gram_index
=
{}
for
ngram_token
in
ngram
:
doc_no
=
[]
for
i
in
range
(
N_DOC
):
if
(
ngram_token
in
ngram_doc
[
i
]):
doc_no
.
append
(
all_doc_no
[
i
])
n_gram_index
[
ngram_token
]
=
doc_no
df
=
[]
for
i
in
range
(
N_DOC
):
count
=
0
for
j
in
range
(
len
(
ngram_doc
[
i
])):
if
join_word
==
ngram_doc
[
i
][
j
]:
count
+=
1
df
.
append
(
count
)
idf
=
[]
for
i
in
range
(
len
(
df
)):
try
:
idf
.
append
(
math
.
log10
(
N_DOC
/
df
[
i
]))
except
ZeroDivisionError
:
idf
.
append
(
str
(
0
))
#w(t, d)
#t = term
#d = document
wtd
=
[]
l
=
[]
for
i
in
range
(
N_DOC
):
dic
=
{}
tf
=
ngram_doc
[
i
]
.
count
(
join_word
)
# menghitung nilai tf
if
tf
!=
0
:
score
=
math
.
log10
(
tf
)
#log10(tf(t,d))
score
+=
1
# 1 + log(tf(t,d))
score
*=
idf
[
i
]
#tf * idf
idx
=
all_doc_no
[
i
]
judul
=
all_title
[
i
]
cast
=
all_cast
[
i
]
year
=
all_year
[
i
]
dic
[
'docno'
]
=
idx
dic
[
'judul'
]
=
judul
dic
[
'score'
]
=
score
dic
[
'cast'
]
=
cast
dic
[
'year'
]
=
year
l
.
append
(
dic
)
wtd
.
append
(
l
)
# [i+1] = defenisi nomor dokumen; score = wtd
# print(score)
hasil
=
[]
hasil
.
append
(
sorted
(
wtd
[
0
],
key
=
lambda
x
:
x
[
'score'
],
reverse
=
True
))
return
hasil
def
detail
(
nomor
):
tree
=
ElementTree
()
tree
.
parse
(
"apps/data/netflix_show.xml"
)
all_doc_no
=
[]
all_title
=
[]
all_description
=
[]
all_cast
=
[]
all_year
=
[]
for
node
in
tree
.
iter
(
"show_id"
):
all_doc_no
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"title"
):
# all_headline.append(node.text.replace("\n"," "))
all_title
.
append
(
node
.
text
)
head
=
all_title
for
node
in
tree
.
iter
(
"description"
):
# all_text.append(node.text.replace("\n"," "))
all_description
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"cast"
):
# all_text.append(node.text.replace("\n"," "))
all_cast
.
append
(
node
.
text
)
for
node
in
tree
.
iter
(
"release_year"
):
# all_text.append(node.text.replace("\n"," "))
all_year
.
append
(
node
.
text
)
N_DOC
=
len
(
all_description
)
text
=
[]
judul
=
[]
cast
=
[]
year
=
[]
hasil
=
[]
id
=
str
(
nomor
)
for
i
in
range
(
N_DOC
):
check
=
all_doc_no
[
i
]
if
check
==
id
:
text
=
all_description
[
i
]
judul
=
all_title
[
i
]
cast
=
all_cast
[
i
]
year
=
all_year
[
i
]
return
text
,
judul
,
cast
,
year
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment