Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
TA13
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
12
Issues
12
List
Board
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Febby B. Simanjuntak
TA13
Commits
d2d1e090
Commit
d2d1e090
authored
Jun 27, 2020
by
Febby Simanjuntak
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove file
parent
692d25d8
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
254 deletions
+0
-254
Untitled.ipynb
Untitled.ipynb
+0
-254
No files found.
Untitled.ipynb
deleted
100644 → 0
View file @
692d25d8
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os,django\n",
"import pandas as pd\n",
"from orm.models import Siswa,Kelas,Karakter\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'Siswa' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-1-eabc7ddc4584>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# Kelas\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0msw\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mSiswa\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobjects\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mall\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mkl\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mKelas\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobjects\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mall\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mListKelas\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msw\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'Siswa' is not defined"
]
}
],
"source": [
"# Kelas\n",
"sw=Siswa.objects.all()\n",
"kl=Kelas.objects.all()\n",
"\n",
"def ListKelas(sw):\n",
" if len(sw)>0:\n",
" cols = ['Nilai']\n",
" \n",
" kel ={\n",
" cols[0] : [int(a.kelass.nilai) for a in sw],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" return dfkel\n",
" else:\n",
" return[]\n",
"\n",
"def Hasil_Kelas():\n",
" kl=ListKelas(sw)\n",
" b = 0\n",
" tampung=[]\n",
" for y in range(len(sw)):\n",
" a=(math.pow(kl.Nilai[y],2))\n",
" b = b+a\n",
" for i in range(len(sw)):\n",
" s = kl.Nilai[i]\n",
" ad=s/(math.sqrt(b))\n",
" tampung.append(ad)\n",
" \n",
" swa={'nama':[a.nama for a in sw]}\n",
" \n",
" if len(sw)>0:\n",
" cols = ['Jenjang']\n",
" \n",
" kel ={\n",
" cols[0] : [str(a.kelass.jenjang) for a in sw],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" \n",
" \n",
" dfswa= pd.DataFrame(data=swa)\n",
" Kelas=pd.DataFrame(data=tampung,columns=['Nilai'])\n",
" new = pd.concat([dfswa,dfkel, Kelas], axis=1)\n",
" return new\n",
"\n",
"\n",
"def HasilKelas_Pembobotan():\n",
" b=Hasil_Kelas()\n",
" lst=list(b)\n",
" y=0\n",
" d=[]\n",
" lst\n",
" \n",
" for i in range(len(b)):\n",
" y =0.3*b.Nilai[i]\n",
" d.append(y)\n",
" pb=pd.DataFrame(d,columns=['Nilai'])\n",
" swa={'nama':[a.nama for a in sw]}\n",
" dfswa= pd.DataFrame(data=swa)\n",
" # Kelas=pd.DataFrame(data=tampung,columns=['Nilai'])\n",
" new = pd.concat([dfswa, pb], axis=1)\n",
" return new"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"HasilKelas_Pembobotan()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Hasil_Kelas()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def ListKelasJn(sw):\n",
" if len(sw)>0:\n",
" cols = ['Jenjang']\n",
" \n",
" kel ={\n",
" cols[0] : [str(a.kelass.jenjang) for a in sw],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" return dfkel\n",
" else:\n",
" return[]\n",
"ListKelasJn(sw)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def Bobot_MTK():\n",
" b=Hasil_Kelas()\n",
" lst=list(b)\n",
" y=0\n",
" d=[]\n",
" lst\n",
" for i in range(len(lst)):\n",
" y =0.3*lst[i]\n",
" d.append(y)\n",
" pb=pd.DataFrame(d,columns=['Nilai'])\n",
" swa={'nama':[a.nama for a in sw]}\n",
" dfswa= pd.DataFrame(data=swa)\n",
" new = pd.concat([dfswa, pb], axis=1)\n",
" return new\n",
"\n",
"Bobot_MTK()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"krt=Karakter.objects.all()\n",
"def ListAkademik(krt):\n",
" if len(krt)>0:\n",
" cols = ['matapelajaran','nilai']\n",
" kel ={\n",
" cols[0] : [str(a.matapelajaran) for a in ak],\n",
" cols[1] : [int(a.nilai) for a in ak],\n",
" }\n",
" dfkel = pd.DataFrame(data=kel)\n",
" return dfkel\n",
" else:\n",
" return[]\n",
"\n",
"ListAkademik(ak)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def ListKecerdasan(krywn):\n",
" if len(krywn)>0:\n",
" target = [4, 3, 4, 5, 3]\n",
" cols = ['sistematika_berfikir', 'konsentrasi', 'logika_praktis','imajinasi_kreatif','antisipasi']\n",
"\n",
" krn = {'nama': [a.nama for a in krywn]}\n",
" dfkrn = pd.DataFrame(data=krn)\n",
"\n",
" kec = {\n",
" cols[0] : [int(a.kecerdasans.sistematika_berfikir) for a in krywn],\n",
" cols[1] : [int(a.kecerdasans.konsentrasi) for a in krywn],\n",
" cols[2] : [int(a.kecerdasans.logika_praktis) for a in krywn],\n",
" cols[3] : [int(a.kecerdasans.imajinasi_kreatif) for a in krywn],\n",
" cols[4] : [int(a.kecerdasans.antisipasi) for a in krywn],\n",
" }\n",
" dfkec = pd.DataFrame(data=kec)\n",
"\n",
" gap = get_gap(dfkec, target)\n",
" pb = pembobotan(gap, cols)\n",
" new = pd.concat([dfkrn, pb], axis=1)\n",
" return new\n",
" else:\n",
" return []"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment